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ABSTRACT

Efficient video content management and exploitation requires ex-
traction of the underlying semantics, which is a non-trivial task in-
volving the association of low-level features with high-level con-
cepts. In this paper, a knowledge-assisted approach for extract-
ing semantic information of domain-specific video content is pre-
sented. Domain knowledge considers both low-level visual fea-
tures (color, motion, shape) and spatial information (topological
and directional relations). An initial segmentation algorithm gen-
erates a set of over-segmented atom-regions and a neural network
is used to estimate the similarity distance between the extracted
atom-region descriptors and the ones of the object models included
in the domain ontology. A genetic algorithm is applied then in or-
der to find the optimal interpretation according to the domain con-
ceptualization. The proposed approach was tested on the Tennis
and Formula One domains with promising results.

1. INTRODUCTION

Recent advances in computing technologies have made available
vast amount of digital video content resulting in a growing re-
search interest in extracting semantic information from such con-
tent in order to enable efficient management and exploitation. How-
ever, due to the possible different interpretations and intended uses
of video resources, the inherent ambiguity in visual information
renders the development of faster hardware or the evolution of
classic segmentation algorithms insufficient. The difficulty [1], in
mapping concepts as perceived by humans (e.g. objects, events)
into a set of automatically extracted image features can be alle-
viated for a particular application domain by means of domain
knowledge. Among the different approaches that have been used
for implementing particular parts of the domain-specific knowl-
edge are formal knowledge representation theories, semantic web
technologies, dynamic belief networks etc. In [2], for example, se-
mantic web technologies are used for representing domain knowl-
edge, while in [3] internal knowledge representation models have
been developed. An object ontology coupled with a relevance
feedback mechanism is introduced in [4], while in [5] semantic
entities in the context of the MPEG-7 standard are defined for
knowledge-assisted video analysis and object detection. Finally,
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in [6], the association of low-level representations and high-level
semantics is formulated as a probabilistic pattern recognition prob-
lem.

In this paper a knowledge-assisted domain-specific video anal-
ysis framework that uses a genetic algorithm to support efficient
object localization and recognition is presented. An initial seg-
mentation generates a set of over-segmented atom-regions and sub-
sequently their low-level descriptors are extracted. Based on these
descriptors and the ones of the object prototype instances included
in the domain ontology, a distance measure is estimated using a
neural network that considers all employed descriptors with dif-
ferent weight on each. In the following, the genetic algorithm is
applied in order to decide how the initially generated atom-regions
should be merged and labelled in order to form meaningful ob-
jects in compliance with the ones defined in the domain ontology.
Analysis may then be performed by using the necessary process-
ing tools and by relating high-level symbolic representations of
the domain ontology to visual features extracted from the signal
domain. Following this approach, the detection of the important
objects depends largely on the knowledge base of the system and
consequently it can be easily applied to different domains provided
that the knowledge base is enriched with the respective domain
knowledge.

The remainder of the paper is structured as follows: section
2 considers domain ontology development, section 3 contains a
presentation of the applied segmentation and descriptor extraction
algorithms, while in section 4 the implementation of the genetic
algorithm is discussed. The intelligent distance estimation based
on low-level descriptors is presented in section 5. Experimental
results are presented in section 6 and finally, conclusions are drawn
in section 7.

2. DOMAIN KNOWLEDGE

The knowledge about the examined domain has been encoded in
the form of an ontology. The developed ontology includes the ob-
jects that need to be detected, their low-level visual features and
their corresponding spatial relations. Thus, the corresponding pro-
totype instances provide the system with the knowledge required
to find the optimal interpretation for each of the examined video
scenes, i.e. the optimal set of mappings among the available atom-
regions and the corresponding domain-specific semantic defini-
tions. The domain ontology contains also information about the
maximum allowed number of detected instances for each object.
In addition, support is provided for defining associations between
the defined low-level visual and spatial descriptors and the algo-



rithms to be applied for their extraction. In the following, a brief
description of the main classes is presented.

ClassObject is the superclass of all objects to be detected dur-
ing the analysis process. When the ontology is enriched with the
domain specific information, this class is subclassed to the cor-
responding domain salient objects. ClassObject Interrelation
Description models the possible object spatiotemporal relations,
while Low-Level Description refers to the set of their represen-
tative low-level visual features. Since real-world objects tend to
have multiple different instantiations, it follows that each object
prototype instance can be associated with more than one spatial
(temporal) description and respectively multiple low-level repre-
sentations. The different types of visual information, i.e. color,
motion etc,. comprise different classes, which are further sub-
classed to reflect the different ways to calculate a visual feature
(e.g. the color descriptor could be any of the color descriptors
standardized by MPEG-7, the distribution models of the respec-
tive color space etc.) The actual values that comprise the low-level
descriptors (e.g. the DC value elements, color space etc. related to
the MPEG-7 dominant color descriptor) are under theLow-Level
Descriptor Parameterclass.

In the current implementation the supported spatial relations
are: adjacency, inclusion and the four relative directional relations
(right, left, above, below), built on Allen’s interval algebra [7].
The used visual low-level descriptors are the MPEG-7 dominant
color descriptor, the motion norm of the averaged global motion-
compensated block motion vectors and compactness defined as the
ratio between a region’s area and the square of its perimeter. For
convenience, the following abbreviations are used for the rest of
the paper to refer to the above mentioned low-level and spatial
descriptions: dominant color descriptor(DC), motion descrip-
tor (MOV ), compactness descriptors(CPS), adjacency relation
(ADJ), below relation(BEW ) and inclusion relation(INC).

Enriching the ontology with domain specific knowledge re-
sults in populating the system knowledge base with prototype in-
stances of the objects to be detected. The proposed system inter-
prets the provided information, i.e. the low-level visual features
and the spatial relations, as a conjunctive normal form clause con-
sisting of two clauses, one for each description category. Further-
more, each conjunct is defined as the disjunction of the object pro-
totype descriptors belonging to the respective category. To tackle
the inevitable loss of objects connectivity in the2D image plane,
atom-regions belonging to the same object are treated as a single
instance of the respective concept as long as they satisfy appropri-
ate topological conventions.

3. INITIAL SEGMENTATION AND LOW-LEVEL
DESCRIPTORS EXTRACTION

Under the proposed framework, a set of over-segmented atom-
regions is generated by combining the color and motion segmenta-
tion masks of the preprocessing step. Color segmentation is re-
alized by identifying up to eight dominant colors in the frame,
as done by the MPEG-7 dominant color descriptor [8], and us-
ing them to initialize a simple K-means algorithm, as in [9]. Mo-
tion segmentation is based on extracting motion information for
the image sequence [10], and then applying to this motion infor-
mation the segmentation methodology of [4]. If a motion-based
segmented region consists of two or more color-based segmented
atom-regions, then it is accordingly split.

The low-level descriptors defined in section 2 are extracted

for each atom-region as follows. For the extraction of the domi-
nant color descriptor, the MPEG-7 eXperimentation Model (XM)
is employed [8]. Motion information calculation is based on the
aforementioned block motion vector estimation using block match-
ing and the calculation of the norm of the averaged global-motion-
compensated motion vectors for the blocks belonging to the re-
gion. Global motion compensation is based on estimating the8
parameters of the bilinear motion model for camera motion, using
an iterative rejection procedure [11]. To extract the compactness
descriptor, the area and the perimeter of the region are calculated.

4. GENETIC ALGORITHM

As previously mentioned, the initially applied color and motion
segmentation algorithms result in a set of over-segmented atom-
regions. AssumingNR atom-regions and a domain ontology of
NO objects, there areNNO

R possible scene interpretations. To
overcome the computational time constraints of testing all possi-
ble configurations, a genetic algorithm is used [12]. Genetic algo-
rithms (GAs) have been widely applied in many fields involving
optimization problems, as they have proved to outperform other
traditional methods. GAs are built on the principles of evolution
via natural selection: an initial population of individuals (chromo-
somes encoding the possible solutions) is created and by iterative
application of the genetic operators (selection, crossover, muta-
tion) an optimal solution is reached, according to the defined fit-
ness function.

In our framework, each individual represents a possible inter-
pretation of the examined scene, i.e. the labels for the generated
atom-regions. An object instantiation is identified by the concept
label and an identifier used to differentiate instances of the same
concept. In order to reduce the search space, the initial population
is generated by allowing each gene to associate the corresponding
atom-region only with those objects that the particular atom-region
is most likely to represent. For example in the domain of Tennis a
green atom-region may be correspond to one of the Field, Wall or
Unknown Object concepts but not to the Ball or Player ones. The
set of valid candidates for each atom-region is estimated according
to the low-level descriptions included in the domain ontology.

The following functions are defined to estimate the similarity
distance between a region and an object model in terms of their
low-level visual and spatial features respectively:

• the interpretation functionIM (gi) ≡ IM (Ri, omj). As-
suming thatgi associates regionri with objectoj having
modelomj , IM (gi) provides an estimation of the degree
of matching betweenomj and ri. IM (Ri, omj) is cal-
culated using the descriptor distance functions realized in
the MPEG-7 XM and is subsequently normalized so that
IM (Ri, omj) belongs to[0, 1].

• the interpretation functionIR, which provides an estima-
tion of the degree to which a relationR holds between two
atom-regions.

Since each individual represents the scene interpretation, the Fit-
ness function has to consider the above defined low-level visual
and spatial matching estimations for all atom-regions. As a conse-
quence the applied Fitness function is defined as follows:

Fitness(G) =
X
gi

IM (gi) +
X

k

X

(gi,gj),giRkgj

IRk (gi, gj)



whereIM (gi) is the estimation function of genegi regarding low-
level visual similarity andIRk (gi, gj) is the estimation function
of spatial similarity betweengi andgj in terms ofRk. It follows
from the above definitions that the optimal solution is the one that
maximizes the Fitness function. This process elegantly handles the
merging of atom-regions: any neighboring such regions belonging
to the same object according to the generated optimal solution are
simply merged. In our implementation, the following genetic oper-
ators were used: roulette wheel selection, in which individuals are
given a probability of being selected that is directly proportionate
to their fitness and uniform crossover, where genes of the parent
chromosomes are randomly copied. To account for objects of no
interest that may be present in a particular domain and for atom-
regions that fail to comply with any of the object models included
in the ontology, the concept of unknown object is introduced.

5. INTELLIGENT LOW-LEVEL DESCRIPTORS
DISTANCE ESTIMATION

The implementation of the interpretation functionIM used for the
fitness function is explained in more details in this section. Match-
ing of an atom region with an object model is based on the esti-
mation of the distance between the associated low-level descrip-
tors presented in section 2. When the task is to compare two re-
gions based on a single descriptor, several distance functions can
be used. In this approach however, the comparison should consider
all three low-level descriptors proposed in section 2, with different
weight on each. The problem is not trivial because there is not a
unique way to compute this distance.

The proposed way to achieve this is based on a back-propagation
neural network with a single hidden layer. The network’s input
consists of the low-level descriptions of both of an atom-region
and an object model, while its output is the normalized distance
between the atom-region and the model, based on all available de-
scriptors. A training set is constructed using the descriptors of a
set of manually labelled atom-regions and the descriptors of the
corresponding object models. The network is trained under the as-
sumption that the distance of an atom-region that belongs to the
training set is minimum for the associated object and maximum
for all others.

When the unknown atom-regions are presented to the trained
network along with the description of the objects, the network re-
sponds with an estimation of their distance. This distance is then
used for the interpretation functionIM , which is used in the fit-
ness function proposed in section 4. An example of average dis-
tances between atom-regions and object models is depicted in 1.
Although in this case the network is trained only on 145 atom-
regions of two frames of a Formula One video sequence and tested
on 65 regions of another frame of a different sequence, it is evident
that it can generalize and provide a robust estimator of a complex
distance function. This is important, especially as manual labelling
of the training set is not an easy task.

6. EXPERIMENTAL RESULTS

The proposed approach was tested on a variety of Formula One and
Tennis domain MPEG-2 videos. As illustrated in figures 1 and 2,
the system output is a segmentation mask outlining the semantic
interpretation, i.e. a mask where different colors representing the
objects defined in the ontology are assigned to each of the pro-
duced regions. The objects of interest included in each domain

Atom-region Distance to object model
Car Grass Road Sand

Car 0.30 0.71 0.71 0.93
Grass 0.91 0.55 0.75 0.65
Road 0.93 0.96 0.54 0.77
Sand 0.79 0.99 0.73 0.21

Table 1. Distances between atom-regions and object models esti-
mated by the neural network

ontology along with their low-level models and spatial relations
are illustrated in table 2. In both domains, the low-level descrip-
tors values included in the corresponding knowledge base were
extracted from a training set of manually annotated images.

The time required for performing the previously described tests
was between 5 and 10 seconds per frame, excluding the process of
motion information extraction via block matching for which effi-
cient and inexpensive hardware implementations exist [10]. More
specifically, the time to perform pixel-level segmentation was about
2 seconds, while the time required by the genetic algorithm to
reach an optimal solution varied depending on the number of atom-
regions and the number of spatial relations. The extraction of
the low-level and spatial descriptions is performed before the ap-
plication of the genetic algorithm. In general, the proposed ap-
proach proved to produce satisfactory results as long as the ini-
tial color-based segmentation did not segment two objects as one
atom-region. Additionally, the use of spatial relations proved ben-
eficial, especially for objects whose low-level visual descriptors
are quite similar.

Concept Visual models Spatial relations
Road DC1

road ∨DC2
road ∨DC3

road Road ADJ Grass,Sand
Car MOV 1

car ∧ CPS1
car Car INC Road

Sand DC1
sand ∨DC2

sand Sand ADJ Grass, Road
Grass DC1

grass ∨DC2
grass ∨DC3

grass Grass ADJ Road,Sand
Field DC1

field ∨DC2
field ∨DC3

field Field ADJ Wall
Player MOV 1

player Player INC Field
Line DC1

line ∧ CPS1
line Line INC Field

Ball DC1
ball ∧ CPS1

ball Ball INC Field
Wall DC1

wall ∨DC2
wall ∨DC2

wall Wall ADJ Field

Table 2. Formula One and Tennis domain definitions

7. CONCLUSIONS

In this paper, a knowledge-assisted domain-specific video analy-
sis approach which exploits the fuzzy inference capabilities of a
genetic algorithm is presented. Domain knowledge includes both
low-level visual descriptors and spatial interrelations, and is en-
coded in the form of an ontology. The genetic algorithm provides a
fundamentally different framework compared to knowledge-based
systems using formal rules. By encoding the object models de-
fined in the ontology in the form of constraints (fitness function
definition), a global optimal interpretation of the examined scene
is reached. The developed domain ontology provides a flexible
conceptualization that allows the easy addition of new low-level
and spatiotemporal descriptors, i.e. supports different abstraction
levels, and the adaptation to different domains.
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